What we need from our model is to find out the behavior of the system
in the long run. The complete discussion of the Markov chain itself deserves
a whole textbook. (See e.g. [2].) In the next section, we only introduce the
concept of Markov chain and some necessary properties.

3 Markov Chains cnd Their Lona-lerm Behavior
(5)( stewns )

3.1. Markov chains are simple mathematical models for random phenomena
evolving in time. Their simple structure makes it possible to say a great
deal about their behavior. At the same time, the class of Markov chains
is rich enough to serve in many applications. This makes Markov chains
the most important examples of random processes. Indeed, the whole of the
mathematical study of random processes can be regarded as a generalization
in one way or another of the theory of Markov chains. [2]

3.2. The characteristic property of Markov chain is that it retains no mem-
ory of where it has been in the past. This means that only the current state
of the process can influence where it goes next.

3.3. Markov chains are often best described by their (state) diagrams. You
have seen a Markov chain in Example [2.10]

Example 3.4. Draw the (state) diagram of a Markov chain which has three
states: A,B and C. It moves from state A to state B with probability 1.
From state C', it moves either to A or to B with equal probability 1/2, and
from B it jumps to C' with probability 1/3, otherwise it stays at B.

1 7'/3 'Fflx‘o- A B C o—
A B Al O 1 0
12
Ak ¢ |1 O

3.5. The Markov chains that we have just seen in the Example [3.4 and in
the previous section (Example [2.10)) are all discrete-time Markov chains.
However, the Poisson process and the state K (¢) which we have studied ear-
lier are examples of a continuous-time Markov chain. Nonetheless, equipped
with our small-slot approximation (discrete-time approximation) technique,
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we may analyze the Poisson process or any continuous-time Markov chain
as a limit of a discrete-time Markov chain as well.

3.6. We will now introduce the concept of stationary distribution, steady-
state distribution, equilibrium distribution, and limiting distribution. For
the purpose of this class, we will not distinguish these terms. We shall see
in the next example that for the Markov chains that we are considering, in
the long run, it will reach a steady state.

Example 3.7. Consider the Markov chain characterized by the state tran-
sition diagram below:

3/5

X n, = # trials in state A ng = # trials in state B
oA 5 D Time Slot 1 0 100,000
= \ X
+ 0 + 50,000
Time Slot # [ 1]2[3[4]s]6]7 Time Slot 2 50,00 50,000
a5 — 2
( [slelale]s]s]a] - -- —_— T N
B + 30,000 +25,000
B Time Slot 3 45,00 55,000
— %
r B \
10° trials < [B + 27,000 +27,500
B Time Slot 4 45,500 54,500
B
Time Slot 5 45,450 54,550
LB Time Slot 6 45,455 54,545

Let’s try a thought experiment — imagine that you start with n = 100, 000
trials of these Markov chain, all of which start in state B. So, during slot
1 (the first time slot), all trials will be in state B. For slot 2, about 50% of
these will move to state A; but the other 50% of the trials will stay at B.

By the time that you reach slot 6, you can observe that out of the 100,000
trials, about 45.5% will be in state A and about 55.5% will be in state B.

Mathematically, this evolution can be calculated simply by

(a) Start with a row vector n(Y) = [nfj), ng)} containing the initial number

of trials in each state.
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(b) For the kth time slot, the new row vector n'*) is the old row vector

n*=Y multiplied by the transition matrix
{,-k
p_ 2/5 3/5
=1/2 1/2]°
>> P = sym([2/5 3/5; 1/2 1/2]);

el | mmmmmmmm e 100,000

I >> nl = sym([0 1e5]), |>> nl = sym([le4 9e4])!

: nl = : :ﬂl = X 1/7’1
n = | [ o, 100000] | | [ 10000, 90000] 2T, = p(l)
- !l >> n2 = n1*P | 1>> n2 = n1*pP ! —

| n2 = L N2 = |
n(2) = | [ s0000, 50000] ' 1+ [ 49000, 51000] A, p(z)
— | >> n3 = n2*P | 1>> n3 = n2*P : =

I n3 = 1 1n3 = !
n(3) = i [ 45000, 55000] ' 1 [ 45100, 54900] X1/ p®
- | >> n4 = n3*P | 1>> n4 = n3*P | =

| n4 = | 1n4 = !
n(4) — ! [ 45500, 54500] i [ 45490, 54510] '% - p(4)
- 1 >> n5 = n4*pP 1 1>> n5 = n4*pP | —

 n5 = | 1n5 = |
n(®) = ! [ 45450, 54550] + 1 [ 45451, 54549] :&> p(s)
- L>> né = n5*p ! ' >> n6 = n5*p ! —

1 h6 = 11 N6 = :
3(6) — | [ 45455, 54545] 1 1 [ 45454.9, 54545.1] I% = p(6)

The relative frequencies' (of the two states) can be found from %g(k).

Recall that when n is large, relative frequencies converge to probabilities.

Turn out that the relatlve fI'qu‘l’EDCIGS_‘_ [?15 5%, 5‘3}5%] stay roughly the
same as you proceed to slot - 7,8 7, alyf(?‘ S0 On2 te5 also that it does not
matter how we start our 100,000 trials. We may start with 10,000 in state
A and 90,000 in state B. Eventually, [45.5%, 585%] will emerge.

In conclusion,

(a) If weobserve the longsEumbeRavior of this Markov chain at a [particulam
Bslot, then the probability that we will see it in statefAyis 0.455 and the

probability that you will see it in state B is 0.545.

(b) In addition, one can also show that if we 6bserve the behavior of this
Markov chain feEaMengitiine) then the proportion of time that it stays
in state A is 45.5% and the proportion of time that it stays in state B
is 54.5%.
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The distribution [0.455, 0.545] is what we referred to as stationary distri-
bution, steady-state distribution, equilibrium distribution, or limiting dis-
tribution above.

3.8. Another way to look at the convergence in Example [3.7]is to first look
at P*. This is because n**1) = n(UP*,
) _ %

[,{':J ";’ y\w) = y_\('lﬂf’ = (y_-.l’JJ )P = u)P’ = LQL“P) Ft= QUJ PB =n P

—

>> pPA2 >> PA3 >> pPA4

P = ans = ans = ans =
0.4000 0.6000 0.4600 0.5400 0.4540 0.5460 0.4546 0.5454
0.5000 0.5000 - 0.4500 0.5500 # 0.4550 0.5450 0.4545 0.5455

>> PN >> P/\@, >> Pf\q_

ans = ans = ans =
- 0.4545 0.5455 - 0.4545 0.5455 0.4545 0.5455
0.4546 0.5454 0.4545 0.5455 0.4545 0.5455

Analytically, the convergence in Example [3.7] can be shown easily by realizing that the tran-
sition P can be decomposed into P = VDV ™! where D is a diagonal matrix of eigenvalues and
V is a matrix whose columns contain the corresponding eigenvectors. In MATLAB, the matrices V
and D can be found easily from the command [V,D] = eig(P). For Example

~12/5 3/5 —-1/10 0 —6/5 1
ST B e
L
Therefore, P": LVDV") - vov'vbov ' avpy!
1
lim P* = lim (VDV)" = lim VD*V-' =V ( lim Dk> v
k—oo k—oo k—oo k—o0
e
From the matrix D above, it is easy to see that /‘
k
lim D = lim [ (=1/10)
k—o0 k—o0
This gives
. 5/11 6/11
k
am P = [ 5/11 6/11 ] '

Therefore, it does not matter what we have for n(). As k — oo,

(k+1) _ (1) pk 5/11 6/11 . 5 6
n =P %\{5/11 6/11 _[lln 11”]

where n is the total number of trials and [n A b—.|

1
k+1 k+1
"= [ F ]
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3.9. From Example [3.7, we can see that Discrete-time Markov chain can be
analyzed via its state transition diagram or its probability transition
matrix P.

Example 3.10. Consider an evolution of a Markov chain which has two

states (1 and 2):
A
2.5 Y1341y

— — — w— —" - —

(a) Estimate\cvi‘ "g‘l;ansi’%ion matrix P.

112/ 2 /Zl-r
F=, [3/; 2/ ]
(b) Let p; denote the proportion of time that the system spends in state 1.
Estimate p;.
P, =Prorof"]‘:on of fime in state 1 = %D = 1.

i

Py = pvof)ov'l":an ot Fae in dtede 2 = 5/1_., 1/1_
3.11. Long-term behavior of a discrete-time Markov chain can be stud-
ied in terms of its steady-state (or limiting or equilibrium) probabilities.
To analytically find these probabilities, in [3.8] we use a technique called
eigendecomposition (spectral decomposition). However, in this class, we
will focus on another (easier) technique.

Example 3.12. In Example[3.7], instead of finding the limit of the distribu-
tion, if we assume that the system will reach some steady-state values, then
at the steady-state, we must have roughly the same number of transitions

- — -

from state A to B and transitions from state B to state A. ! '
Therefore, 3y

gsciBony

1
slot 4 bOO N "8¥7 w
A
y £ >< B) uz: |
1001 Ny a "a o e L
v 5"\,3

2 =-!- P = 5
An =2 n V‘g*-—c‘;-ﬂ,q FPA ?.PBSW’ A c/”
2 © 5 4\# . = PatPs =1 s = “A
.t =n A5 L - —_
A P Ng= ‘5,”44 Mﬁ

% na = /11 ’,
Definition 3.13. A balance equationﬂis an equation that describes the

probability flux associated with a Markov chain in and out of states or set
of states. Think -

cv Pver\‘t'2'4 — KCL

Fw'.-;m'p:':'l‘/ +fw5‘['|/ -7 ]ao-'om e e.--gn



To write down a balance equation, first define a boundary, then consider
the transfer of probabilities “in” and “out” of the boundary. To be at
equilibrium, there should not be any net transfer.

Example 3.14. Let’s reconsider the state diagram derived in Example [3.4]
Write the balance equation for each of the boundaries below.

O?tn bcm -’\CJOI-'
st

N 'ot d Twi. ‘[‘W-n s Similas
can we

This form i3 '.'tm:]ar te hows we &(r}r
P c]nou‘:l :X'h-'\d te hom ve qff}' kel @ & SUrunaJe,
""DH‘W% \ 7/ kcL @ a wode.

3.15. The steady=state probabilities can be found from the balance equa-
tions together with the fact that the sum of them must be 1.

Example 3.16. For the the state diagram derived in Example [3.4. We can

use the balance equations expressed in Example to find its steady-state
probabilities:

Pe "FA Pat f/‘l
Py = CPA D (et
Pe=22Yq" 7

Patfa*pPe =1
Pat brA+er=1
QP =1
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Example 3.17. Let’s reconsider Example [2.10] where m = 2.

|
| |

1- A8 0 2 1-2u6
: ,,

\J‘\l\/l 7! \—/I’I
I o 20)
| |
Let p, be the long-term 1 1-A6—uo 1
probability that K = k. l
/1& Po I g&pﬁ 2’& P, = Zﬂ\&pz
1 J’ﬂ = AFO - -A_ A *
P+ P+ P, =1 P 7 Pe /h 1’1 %F°
AL 1 1
Pot Aps+ -L-fo"‘ pOZ—A?_’pl APy, P, = po
b 4| 1+ A+ > | At
T oata Al _—
z =P =P~ 1+ ar Al

3.18. Reminder: Two Interpretations of steady-state probabilifies: When
we let a system governed by a Markov chain evolve for a long time,

(a) at a particular slot, the probability that we will find the system in a
particular state can be approximated by its corresponding steady-state
probability,

(b) considering the whole evolution up to a particular time, the propor-
tion of time that the system is in a particular state can be
approximated by its corresponding steady-state probability.

3.19. Finally, we can now use what we learned to derive the Erlang B
formula. In general, if we have m channels, then

DPm =

Note that p,, is the (long-run) probability that the system is in state m.
When the system is in state m, all channels are used and therefore any new
call request will be blocked and lost.
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Here, p,, is the same as call blocking probability P, which is the long-run
proportion of call requests that get blocked.

3.20. Convention: In this class, for any question that requires you to get
your answers (call blocking probability or steady-state probabilities) “from
the Markov chain” or “via the Markov chain”, make sure that you

(

a) draw the Markov chain (with all the states and transition probabilities),
(b

)
) set up the boundaries,
(¢) write down the corresponding balance equations,

(d) use the equations to solve for the interested quantities.

3.21. Remark: Beyond this class, mathematicians do have more direct
ways to analyze continuous-time Markov chain without the discrete-time
approximation that we have been using here. However, the analysis requires
more background knowledge and hence we did not try to use it.

Here is a glimpse of what’s out there:

(a) Our version: A8
e O @D
s

e Note that the value of ¢ itself is not important as long as it is
“small enough”. When we calculate the steady-state probabilities,
0 disappears anyway.

e The returning-to-the-same-state arrows are not used at all because
it will not cross (or cross and then return) any boundary.

(b) The-rest-of-the-world version: N

GRSt e i om o

/M-

e The label on each arrow indicates probability transition rate in-
stead of transition probability.

e No arrow for returning to the same state
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